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We study the effects of multiple scattering of slowly modulated water waves by a
weakly random bathymetry. The combined effects of weak nonlinearity, dispersion
and random irregularities are treated together to yield a nonlinear Schrödinger
equation with a complex damping term. Implications for localization and side-band
instability are discussed. Transmission and nonlinear evolution of a wave packet past
a finite strip of disorder is examined.

1. Introduction
In areas of classical physics such as electromagnetism, acoustics and seismology,

there is extensive literature on the propagation of infinitesimal sinusoidal waves in
random media. Based on linearized field equations, perturbation theories have been
developed for weak random inhomogeneities (see Karal & Keller 1964; Keller 1964;
Chernov 1967; Frisch 1968; Soong 1973; Ishimaru 1997). On the basis of linearized
equations, Asch et al. (1991) have treated infinitesimal sound pulses in randomly
layered media for weak and strong inhomogeneities. They focused on cases where the
correlation length is much less than the typical wavelength, which is in turn much less
than the extent of the region of randomness. In one-dimensional wave propagation,
if the inhomogeneities extend over a large spatial region, multiple scattering yields a
complex change in the propagation constant, the real part of which corresponds to a
change of wavenumber and the imaginary part to spatial attenuation. In particular, the
latter is effective for a broad range of incident wave frequencies and is a distinctive
feature of randomness, first found in condensed-matter physics (a conductor with
disordered properties can turn into an insulator) by Anderson (1958). This is in
sharp contrast to periodic inhomogeneities which cause strong Bragg scattering only
for certain frequency bands. A survey of localization theories in many branches of
classical physics based on linearized equations can be found in Sheng (1990, 1995).

Of interest to coastal oceanography, the propagation of surface waves over a ran-
dom seabed in water of intermediate depth (i.e. comparable to the wavelength) has
been studied by Hasselman (1966) and Long (1973) using the technique of Feyn-
man diagrams. Similar techniques have also been employed by Elter & Molyneux
(1972) to study linearized long tsunami waves propagating across an ocean with
a random bathymetry. The laboratory experiments of Belzons, Guazzelli & Parodi
(1988) and the companion linear theory of Devillard, Dunlop & Souillard (1988) have
aroused interest in the study of the localization of infinitesimal waves over a random
bathymetry, because of the oceanographic implications for wave transformation over
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long distances. Further linearized theories have been reported by Nachbin & Papani-
colaou (1992) and Nachbin (1995) for waves over large bathymetric variations with
scales comparable to the mean depth. More recently, the linearized problem of weak
scattering by small random irregularities on the seabed has been studied by Pelin-
ovsky, Razin & Sasorova (1998), who obtained analytical results for the propagation
constant of a simple-harmonic wave train. The same problem has been reinvestigated
in Stepaniants (2001) using a diagrammatic technique.

Considerable theoretical advances in nonlinear wave propagation in random media
have been made in mathematical physics. In a seminal paper, Devillard & Souillard
(1986) have studied the one-dimensional nonlinear Schrödinger equation (NLS) with
a random potential. For a stationary wave passing through a random medium of
thickness L, they find the transmission coefficient to attenuate exponentially with
increasing L if nonlinearity is weak. For sufficiently strong nonlinearity, however,
the attenuation is slowed and can become only polynomial. Confirmations and ex-
tensions to other random potentials have been given by Doucot & Rammal (1987),
Kivshar et al. (1990), Gredeskul & Kivshar (1992) and Bronski (1998). Theories for
non-stationary incident waves, such as solitons, passing through a random potential
have been advanced by many researchers, e.g. Gredeskul & Kivshar (1992), Knapp,
Papanicolaou & White (1991), Knapp (1995), Garnier (1998), Garnier (2001b). Of
particular interest is the finding (Garnier 2001b) that the manner of soliton transmis-
sion depends on the power spectrum of the random perturbations. A theory for the
KdV equation with a weak and random potential has also been studied by Garnier
(2001a). The review by Bass et al. (1988) and the article by Knapp, Papanicolaou &
White (1989) are also germane.

Published articles on nonlinear water waves over a randomly irregular seabed are
relatively scarce. Howe (1971) and Rosales & Papanicolaou (1983) examined shallow
water waves. Since linear theory has so far yielded exponential attenuation in space
(localization), it is useful to examine whether nonlinearity alters this conclusion.
This point is of oceanographic interest, since such attenuation amounts to an effective
dissipation by a conservative mechanism of multiple scattering, unlike bottom friction
or wave breaking. As a first step, we study here the effects of random depth variations
on nonlinear surface waves with a narrow-frequency band. Attention is limited to
two space dimensions (vertical and horizontal) and to narrow-banded waves over a
weakly random bottom of constant mean depth. The length scale of the random
perturbations, `, is assumed to be comparable to the wavelength 2π/k and to the
mean depth h, all of which are much smaller than the length scale of the wave
modulation, 2π/εk, where ε is a small parameter characterizing the slope of both the
surface waves and the seabed irregularities. The total range of propagation and the
extent of the random bathymetry are assumed to be even longer, ∼ 2π/ε2k. Following
Mei & Pihl (2002), who studied waves on a nonlinear string in elastic surroundings
with random properties, we employ the method of multiple scales to treat, in a unified
manner, localization and slow modulation due to dispersion and weak nonlinearity.
We shall show that the envelope of a narrow-banded wave train is governed by a
modified nonlinear Schrödinger equation with an additional linear term. The complex
coefficient of the new term is not stochastic, but is the autocorrelation of the random
perturbations; it is also of the same order as the other terms in the envelope equation.
Therefore, the deductions are expected to be somewhat different than those based on
the NLS equation with a stochastic (and weak) potential. Physical implications are
explored analytically and numerically, for both infinitesimal and weakly nonlinear
waves.
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2. Evolution equations of the wave envelope
2.1. Multiple-scale expansions

We adopt the usual assumptions of inviscid irrotational flow and consider only two-
dimensional motion in the (x, z)-plane. Let the seabed be described by z = −h+ b(x),
where the mean depth h is constant, but b(x) is a random function of x with zero mean.
Let the typical slopes of both the free surface height and the seabed roughness height
be small, i.e. kζ ∼ kb = O(ε) � 1. The governing equations and nonlinear boundary
conditions for the velocity potential φ(x, z, t) and the free surface displacement ζ(x, t)
are well known and are not repeated here. To allow for slow modulations due to
weak nonlinearity and spatial attenuation, we introduce the multiple-scale variables
x1 = εx, x2 = ε2x, . . .; t1 = εt, t2 = ε2t, . . . . The bathymetric variation is assumed
to depend on the fast and slow scales, i.e. b = b(x, x1, x2). Expanding the velocity
potential and free surface height as

φ = εφ1 + ε2φ2 + ε3φ3 + · · · , ζ = εζ1 + ε2ζ2 + ε3ζ3 + · · · , (2.1)

where φn = φn(x, x1, x2, . . . , z, t, t1, t2, . . .) and ζn = ζn(x, x1, x2, . . . , t, t1, t2, . . .), we obtain
a sequence of perturbation problems similar to those for the simpler case of a
horizontal (deterministic) seabed (Mei 1989). The known results are(

∂2

∂x2
+

∂2

∂z2

)
φn = Fn, −h < z < 0, (2.2)

from the governing Laplace equation, and

Lφn ≡
(
g
∂

∂z
+
∂2

∂t2

)
φn = Gn, z = 0, (2.3)

from the free surface condition (combining kinematic and dynamic requirements).
Once the velocity potential is found, the free surface height follows from the dynamic
condition of constant pressure,

−gζn = Hn, z = 0. (2.4)

The forcing terms at the first two orders are

F1 = 0, F2 = −2φ1xx1
,

G1 = 0, G2 = −[ζ1Lzφ1 + (φ2
1x + φ2

1z)t + 2φ1tt1 ],

H1 = φ1t, H2 = φ2t + 1
2
(φ2

1x + φ2
1z) + φ1t1 + ζ1φ1zt,

where the linear operator L is defined in (2.3). Only the seabed boundary condition
needs to be reconsidered:

φz − εbxφx = 0, z = −h+ εb. (2.5)

Expanding about the mean seabed, z = −h, we have

φ1z + ε(φ2z − (bφ1x)x) + ε2(φ3z − (bφ2x)x − 1
2
(b2φ1xz)x) = 0,

on z = −h. Equating like powers of ε yields

∂φn

∂z
= In, z = −h, (2.6)

where

I1 = 0, I2 = (bφ1x)x, I3 = (bφ2x)x. (2.7)
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Let 〈 . . . 〉 be the stochastic average (hence deterministic) and ( . . . )′ the random
component. At all orders, we express the solutions as

φn = 〈φn〉+ φ′n, ζn = 〈ζn〉+ ζ ′n, n = 1, 2, 3, . . . . (2.8)

We also write

Fn = 〈Fn〉+ F ′n, Gn = 〈Gn〉+ G′n, Hn = 〈Hn〉+H ′n, In = 〈In〉+ I ′n. (2.9)

By definition, the averages of all the random components above vanish. Note that
since F1 = G1 = I1 = 0, φ1 is not directly affected by randomness at this order so that

φ′1 = ζ ′1 = 0; φ1 = 〈φ1〉, ζ1 = 〈ζ1〉, (2.10)

2.2. The mean components at O(1) and O(ε)

We take the leading-order solution to be a monochromatic wave train propagating
from left to right,

φ1 = 〈φ1〉 = φ10 + (φ11 eiψ + ∗) = φ10 − g

2ω

coshQ

cosh q
(iA eiψ + ∗), (2.11)

ζ1 = 〈ζ1〉 = 1
2
A eiψ + ∗, (2.12)

where the zeroth harmonic φ10 = φ10(x1, x2, t1, t2, . . .) represents the long-wave po-
tential. A denotes the leading-order wave amplitude, ψ = kx − ωt the wave phase,
q = kh, Q = k(z + h) and ∗ denotes the complex conjugate. The dispersion relation

ω2 = gk tanh kh (2.13)

relates the frequency ω and the wavenumber k.
From (2.7) and (2.10), 〈I2〉 = (〈b〉φ1x)x = 0. Thus, the boundary value problem for
〈φ2〉 is independent of the bed roughness b and the solution is formally the same as
that for a horizontal seabed,

〈φ2〉 = φ20 − ωQ sinhQ

2k2 sinh q

(
∂A

∂x1

eiψ + ∗
)
− 3

16

ω cosh 2Q

sinh4 q
(iA2 e2iψ + ∗), (2.14)

〈ζ2〉 = −1

g

∂φ10

∂t1
− k|A|2

2 sinh 2q
+
k cosh q(1 + 2 cosh2 q)

8 sinh3 q
(A2 e2iψ + ∗)

+
1

2ω

(
i
∂A

∂t1
eiψ + ∗

)
− q sinh q

2k cosh q

(
i
∂A

∂x1

eiψ + ∗
)

(2.15)

(Mei 1989), where φ20 = φ20(x1, x2, t1, t2, . . .).
Solvability of the first harmonic of 〈φ2〉 yields the well-known result

∂A

∂t1
+ cg

∂A

∂x1

= 0, (2.16)

where

cg =
dω

dk
=
ω

2k

(
1 +

2kh

sinh 2kh

)
(2.17)

is the group velocity. The phase speed is denoted here as c = ω/k.
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2.3. Random component at O(ε)

To derive the random components, we use again the fact that 〈I2〉 = 0, so that the
bottom boundary condition (2.6) gives

∂φ′2
∂z

= I ′2 = (bφ1x)x, z = −h. (2.18)

It follows that φ′2 contains only the first harmonic,

φ′2 = φ′21 e−iωt + ∗, ζ ′2 = ζ ′21e
−iωt + ∗. (2.19)

The boundary-value problem for φ′21 is(
∂2

∂z2
+

∂2

∂x2

)
φ′21 = 0, −h < z < 0, (2.20)

(
g
∂

∂z
− ω2

)
φ′21 = 0, z = 0, (2.21)

∂φ′21

∂z
= (b(φ11 eikx)x)x =

gkA

2ω cosh q
(b(x) eikx)x, z = −h. (2.22)

This problem is solved by using Green’s function G(x, z; x′), defined by

Gxx + Gzz = 0, −h < z < 0, (2.23)

Gz − ω2

g
G = 0, z = 0, (2.24)

Gz = δ(x− x′), z = −h, (2.25)

and the radiation condition that G behaves as outgoing waves at ±∞. Relegating the
details of G to Appendix A, we point out that

G(x, z; x′) = G (|x− x′| , z) . (2.26)

After using Green’s theorem, the solution for φ′21 is found to be

φ′21 =
gkA

2ω cosh q

∫ ∞
−∞

(
b(x′)eikx′

)
x′
G (|x− x′| , z) dx′, (2.27)

which is a random function of x.

2.4. Mean component at O(ε2)

Ensemble-averaging the equations for φ3 gives(
∂2

∂x2
+

∂2

∂z2

)
〈φ3〉 = 〈F3〉, −h < z < 0, (2.28)

L〈φ3〉 = 〈G3〉, z = 0, (2.29)

∂〈φ3〉
∂z

= 〈I3〉, z = −h, (2.30)

where the operator L is defined in (2.3). By (2.10), φ1 and ζ1 are deterministic and
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hence the forcing functions at O(ε2) are given by

〈F3〉 = − [φ1x1x1
+ 2φ1xx2

+ 2〈φ2〉xx1

]
,

〈G3〉 = −
[
〈ζ2〉Lzφ1 + ζ1Lz〈φ2〉+ 1

2
ζ2

1Lzzφ1 + 2(φ1x〈φ2〉x + φ1z〈φ2〉z)t

+ ζ1

(
φ2

1x + φ2
1z

)
tz

+
1

2

(
φ1x

∂

∂x
+ φ1z

∂

∂z

)(
φ2

1x + φ2
1z

)
+ 2〈φ2〉tt1 + 2φ1zφ1zt1 + 2φ1x1

φ1xt + 2φ1xφ1xt1

+ 2φ1xφ1tx1
+ 2ζ1φ1ztt1 + 2φ1tt2 + φ1t1t1

]
.

Since φ1, 〈ζ2〉 and 〈φ2〉 are independent of b(x), 〈F3〉 and 〈G3〉 are formally identical
to those for a horizontal seabed (Mei 1989). The bed roughness b(x) only affects 〈I3〉.
From the last of (2.7), we have, on the mean seabed z = −h,

〈I3〉 = 〈bφ2x〉x =
〈
b
(〈φ2〉x + φ′2x

)〉
x

= 〈bφ′2x〉x = 〈bφ′2〉xx − 〈bxφ′2〉x . (2.31)

We now add the assumption that the random function b(x) depends on x, x1 and
x2, but is stationary with respect to the fast coordinate x. The correlation length is
assumed to be of the same order as a typical wavelength. The correlation function
can then be written as

〈b(x)b(x′)〉 = σ2(x1, x2)γ(ξ), (2.32)

where the correlation coefficient γ is an even and real function of ξ = x−x′ only, and
the root-mean-square σ may depend on the long scales. Note the following identity:〈

d(b(x))

dx
b(x′)

〉
=

∂

∂x
〈b(x)b(x′)〉 = σ2 dγ

dξ
. (2.33)

From (2.19), (2.27) and (2.33),

〈bφ′2〉xx|z=−h =
gkAe−iωt

2ω cosh kh

∂2

∂x2

∫ ∞
−∞

∂

∂x′
(
〈b(x)b(x′)〉 eikx′

)
G
(|x− x′| ,−h) dx′ + ∗

=
gk3σ2Aeiψ

2ω cosh kh

∫ ∞
−∞

d

dξ

(
γe−ikξ

)
G
(|ξ|,−h) dξ + ∗, (2.34)

〈bxφ′2〉x|z=−h =
gkAe−iωt

2ω cosh kh

∂

∂x

∫ ∞
−∞

∂

∂x′

(〈
d(b(x))

dx
b(x′)

〉
eikx′
)
G
(|x− x′| ,−h) dx′ + ∗

= − igk2σ2Aeiψ

2ω cosh kh

∫ ∞
−∞

d

dξ

(
dγ

dξ
e−ikξ

)
G
(|ξ|,−h) dξ + ∗. (2.35)

We now define the coefficient β by

〈I3〉 = iβA cosh kh eiψ + ∗. (2.36)

Combining (2.31), (2.34), (2.35) and (2.36) gives

β(x1, x2) =
g (kσ(x1, x2))

2

2ω cosh2 kh

∫ ∞
−∞

{(
d

dξ
− ik

)2

γ

}
e−ikξG

(|ξ|,−h) dξ. (2.37)

The integral in (2.37) is merely a complex constant. The complex coefficient β is
evaluated explicitly in Appendix B for the case of a Gaussian correlation.
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We separate 〈φ3〉 into different harmonics:

〈φ3〉 = 〈φ30〉+
(〈φ31〉eiψ + ∗)+ · · · = 〈φ30〉+

(
eiψF (x2, z, t2) + ∗)+ · · · , (2.38)

where randomness only affects the first harmonic, in view of (2.36). In particular,
〈φ30〉 is governed by equations unaffected by the bathymetry, and hence the solvability
condition for 〈φ30〉 is formally the same as that for a horizontal seabed (see (2.36) in
Mei 1989, p. 613), and gives the long-wave equation

∂2φ10

∂t21
− gh∂

2φ10

∂x2
1

=
ω3 cosh2 q

2k sinh2 q

∂|A|2
∂x1

− ω2

4 sinh2 q

∂|A|2
∂t1

. (2.39)

As for the first harmonic in 〈φ3〉, we substitute (2.36) and (2.38) into (2.28), (2.29)
and (2.30) to obtain the boundary value problem

∂2F

∂z2
− k2F = F31, −h < z < 0, (2.40)

∂F

∂z
− ω2

g
F =

1

g
G31, z = 0, (2.41)

∂F

∂z
= iβA cosh kh, z = −h, (2.42)

where F31 and G31 are the complex first-harmonic amplitudes of 〈F3〉 and 〈G3〉, respect-
ively, and are given in Mei (1989, (2.37) and (2.38), p. 613). Since the inhomogeneous
boundary-value problem above has a non-trivial homogeneous solution, we invoke
the solvability condition (Green’s Theorem) to obtain

∂A

∂t2
+ cg

∂A

∂x2

− iωq cosh2 q

k2 sinh2 q

∂2A

∂x2
1

+
i

2ω

∂2A

∂t21
+

iωk2
(
cosh 4q + 8− 2 tanh2 q

)
16 sinh4 q

|A|2A

− ik2A

2ω cosh2 q

(
∂φ10

∂t1
− 2ω cosh2 q

k

∂φ10

∂x1

)
− iq sinh q

k cosh q

∂2A

∂x1∂t1
− iβA = 0, (2.43)

where q = kh. The effect of the random topography on the wave envelope is isolated
in the last term. The known result for a horizontal (deterministic) seabed is simply
(2.43) with β = 0 (see (2.39) in Mei 1989, p. 614). Finally, by combining (2.16) and
(2.43), we obtain(

∂

∂t1
+ cg

∂

∂x1

)
A+ iε

{
−ω

′′

2

∂2A

∂x2
1

+
ωk2

(
cosh 4q + 8− 2 tanh2 q

)
16 sinh4 q

|A|2A

−
(

k2

2ω cosh2 q

∂φ10

∂t1
− k ∂φ10

∂x1

)
A

}
− εiβA = 0, (2.44)

where

ω′′ =
d2ω

dk2
=
c2
g

ω
− ω

2k2

(
1 + 4k2h2 cosh 2kh

sinh2 2kh

)
. (2.45)

In summary, we derived the pair of equations (2.39) and (2.44) governing the slow
evolution of the short-wave envelope A and the long-wave potential φ10. Equations
(2.39) and (2.44) can be transformed to the standard NLS form with an additional
potential as in Devillard & Souillard (1986) and others, except that the potential term
here representing the random bathymetry is deterministic.
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3. A steady train of attenuated Stokes waves
As a first application of our theory, we examine the limiting case of a steady wave

train. There is no dependence on (x1, t1, t2), so that A = A(x2). Equation (2.43) reduces
to

cg
∂A

∂x2

+ iα|A|2A− iβA = 0, (3.1)

where

α =
ωk2(cosh 4kh+ 8− 2 tanh2 kh)

16 sinh4 kh
> 0.

The solution to (3.1) is a modified Stokes wave exponentially attenuated (localized)
in the direction of propagation,

A = a0 exp (−βix2/cg) exp

(
i
βrx2

cg
+ i

αa2
0

2βi
(exp(−2βix2/cg)− 1)

)
, (3.2)

where a0 is the real amplitude at x2 = 0 and βr, βi are the real and imaginary parts
of β, respectively.

3.1. Localization length

From (3.2), the amplitude of A decays exponentially as |A| = a0 exp(−βix2/cg). Note
that the spatial attenuation is exponential and is independent of nonlinearity. If the
extent of disorder is L in the x2 scale, the amplitude at the transmission end is clearly
reduced from the incident amplitude by a factor exponentially diminishing in L. Thus
the physical consequence of random scattering here is the same as in the simplest
cases of localization, i.e. exponential attenuation in space. This is unlike problems
based on the NLS equation with a stochastic potential, in which nonlinearity can
change the spatial attenuation pattern from exponential to polynomial (Devillard &
Souillard 1986). Our localization distance can be defined by

Lloc =
cg

ε2βi
. (3.3)

In Appendix B, βi is shown in general to be expressible in terms of the Fourier
transform of γ(ξ), so that (3.3) may be written as

Lloc

h
=

(2kh+ sinh 2kh)2

2(εσk)2k2h [γ̂(0) + γ̂(2k)]
, (3.4)

where

γ̂(0) =

∫ ∞
−∞
γ(ξ) dξ, γ̂(2k) =

∫ ∞
−∞

e−2ikξγ(ξ) dξ.

The above result (3.4) was first obtained by Pelinovsky et al. (1998) by analysing the
linearized potential flow problem.

As an example, we consider the Gaussian correlation

γ(ξ) = exp (−ξ2/`2
G), so that γ̂(2k) = `G

√
π exp

(−(k`G)2
)
, (3.5)

where `G is the Gaussian correlation distance. Substituting (3.5) into (3.4) yields

Lloc

h
=

(2kh+ sinh 2kh)2

2
√
πε2kh(σ/`G)2(k`G)3

(
1 + exp[−(k`G)2]

) . (3.6)

The localization length Lloc is plotted in figure 1. Large σ (strong disorder) and large
σ/`G (steep roughness) both lead to short localization distances and fast attenuation.
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If the correlation length to depth ratio `G/h and the steepness σ/`G of the random
topography are held fixed, then Lloc/h becomes infinite as kh → 0 and as kh → ∞.
Thus long waves are only affected by the mean depth h and not by the relatively
short bottom roughness, while short waves do not feel the bottom at all. The smallest
Lloc/h occurs for some intermediate kh near unity. By minimizing Lloc/h with respect
to k we find the condition for the smallest Lloc/h:

2− 1 + cosh 2kh

1 + sinh 2kh/(2kh)
− (k`G)2

1 + exp[(k`G)2]
= 0. (3.7)

The product k`G = 2π`G/λ represents the ratio of correlation length to wavelength.
If kh and the mean steepness of the roughness, σ/`G, are held fixed, then Lloc/h ∝
F(k`G) where F(x) = x−3(1 + exp(−x2))−1 is a monotonically decreasing function
for x > 0. Therefore, as k`G increases (longer roughness relative to the wavelength),
the localization length Lloc decreases, indicating stronger attenuation. For k`G � 1,
waves are too long relative to the correlation length to be affected by the random
bed roughness. On the other hand, for k`G � 1, the waves are very short relative to
the correlation length and are thus strongly attenuated. These conclusions are similar
to those already known for linear waves through a medium with a weakly random
index of refraction, e.g. Chen & Soong (1971) and Garnier (2001b, p. 151).

It is also interesting that the localization distance is insensitive to the precise form
of the correlation function. To show this, we consider the exponential correlation

γ(ξ) = exp (− |ξ| /`E), so that γ̂(2k) =
2`E

1 + 4 (`Ek)
2
, (3.8)

where `E is the exponential correlation length. By substituting (3.8) into (3.4), the
corresponding localization distance is found to be

Lloc

h
=

(2kh+ sinh 2kh)2
(
1 + 4 (k`E)2

)
8ε2kh

(
σ/`E

)2
(k`E)3

(
1 + 2 (k`E)2

) . (3.9)

To compare the localization lengths corresponding to the Gaussian and exponential
correlations, we choose `E =

√
π`G/2 so that (3.8) has the same area as (3.5). With

this choice, the localization distances for the two correlations are plotted for the same
parameters in figure 1, showing only minor differences.

3.2. Wavenumber

In view of (3.2), we find that β contributes to an increase in wavenumber, both
directly through βr and indirectly through βi which is associated with nonlinearity
and amplitude reduction,

∆k = (∆k)RD + (∆k)NL ≡ ε2

cg

(
βr − αa2

0 exp

(
−2βix2

cg

))
. (3.10)

Recall that over a strictly horizontal seabed, βr = βi = 0 and the wavenumber shift
is a constant, corresponding to a Stokes wave. Since α > 0, nonlinearity contributes
to the reduction of k and hence increases the wavelength. Since the amplitude
decays in space, this contribution diminishes with propagation distance. Randomness
contributes more directly to the change in wavenumber via (∆k)RD. In Appendix B,
§B.1, βr is found for the Gaussian correlation. Figure 2 shows that the corresponding
(∆k)RD is positive for all kh, and hence randomness shortens the wavelength. Since
dcg/dk = ω′′ < 0 and dc/dk = (cg − c)/k < 0, randomness also reduces the group and
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Figure 1. Localization length to depth ratio ε2Lloc/h corresponding to the Gaussian (solid, (3.6))
and exponential (broken, (3.9)) correlations, for fixed roughness steepness σ/`G = 1 and various
`G/h. We have chosen `E = `G
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π/2 so that the first moments (areas) of the exponential and

Gaussian correlations are the same.
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Figure 2. Normalized increase in wavenumber (∆k)RD/(ε
2k) corresponding to the Gaussian

correlation, for fixed roughness height σ/h = 1 and various `G/h.

phase speeds. Since σ/h = 1 is fixed, decreasing `G/h is equivalent to increasing σ/`G,
implying steeper random roughness, which is seen to shorten the waves. For fixed
roughness (σ, `G), (∆k)RD decreases with increasing kh in general, since short waves
are less affected by the bottom.

3.3. Comments on other works on linearized waves

Belzons et al. (1988) performed experiments on the localization of infinitesimal water
waves over a random bathymetry in a small wave flume of length 4 m and mean
water depth h in the range 1 to 4 cm. Bathymetric irregularities were represented by
58 discontinuous steps of random length and amplitude. The step height and step
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length were uniformly distributed, respectively, between −∆h and ∆h (zero mean),
and between `B−∆` and `B + ∆`. The main results for localization were reported for
h = 1.75 cm, ∆h = 1.25 cm, `B = 4.1 cm and ∆` = 2.0 cm. Thus, the height of the steps
was not small compared to the mean depth. By definition of b and σ, the dimensional
root-mean-square height of the random steps is

εσ =
∆h√

3
. (3.11)

It can be shown that the dimensionless correlation coefficient for the random-step
bathymetry is

γ(ξ) =


1− |τ|

`B
, 0 6 |τ| < `B − ∆`,(

`B + ∆`− |τ|)2

4 `B ∆`
, `B − ∆` 6 |τ| 6 `B + ∆`,

0, |τ| > `B + ∆`

(3.12)

(e.g. Stepaniants 2001). The corresponding localization distance is calculated from
(3.4), (3.11) and (3.12),

Lloc

h
=

3`B(2kh+ sinh 2kh)2

h(k∆h)2

(
1 + 2(k`B)2 + 2

3
(k∆`)2 − sin(2k∆`)

2k∆`
cos(2k`B)

)−1

.

(3.13)

Comparison of our theory, (3.13), with the experiments of Belzons et al. (1988)
produces qualitative agreement. Since the recorded data on the localization length
exhibit very large scatter, due in part to averaging over several realizations of the
random bed and in part to vortex shedding at the step corners, the comparison is
inconclusive and is not presented. Decisive checks must await new experiments for
small-amplitude randomness, common in many oceanographic situations.

Devillard et al. (1988) and Nachbin (1995) have derived theories for linear gravity
waves over large-amplitude random depth variations. Devillard et al. (1988) in-
voked the wide-spacing approximation by neglecting the effects of evanescent modes
to predict the localization length. Nachbin (1995) used the results of a numerical
Schwarz–Christoffel transformation in a formula for the localization length,

Lloc

`
= cN

(
λ

`

)2

, (3.14)

where λ is the wavelength, ` is the correlation length of the random bed and cN
is a constant computed numerically from Monte Carlo simulations for a set of
topographic profiles, for λ/` > 5. In figure 3, the numerical predictions by Devillard
et al. (1988) and Nachbin (1995) of the localization distance corresponding to the
experiments of Belzons et al. (1988) are compared to our formula for small disorder,
(3.13). For relatively long waves, there is some qualitative agreement, despite the
different realms of intended validity.

Stepaniants (2001) used diagrammatic techniques to study the linearized problem
of wave propagation over a random topography with small bathymetric variations.
Although the problem is the same as that solved by Pelinovsky et al. (1988), a different
localization distance was obtained, and is probably in error.
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Figure 3. Theoretical dependence of localization length Lloc on wavelength λ. The dots with error
bars represent the theoretical predictions of Devillard et al. (1988). The dash-dot lines represent the
localization distance (3.14) of Nachbin (1995) with ` = `B corresponding to cN = 0.899, 0.823, 0.753,
from left to right. The solid line represents (3.13) with parameter values ∆h/h = 5/7, `B/h = 16/7
and ∆`/`B = 1/2.

We next explore the effects of random scattering on the nonlinear evolution of
weakly nonlinear waves.

4. Nonlinear evolution
Following the standard procedure (see e.g. Mei 1989, pp. 614–616), (2.39) and (2.44)

can be combined to yield(
∂

∂t1
+ cg

∂

∂x1

)
A+ iε

{
ωα1

k2

∂2A

∂x2
1

+ ωk2α2 |A|2 A+ k

(
1 +

cg

2c cosh2 q

)
S (t1)A− βA

}
= 0, (4.1)

where S(t1) is an arbitrary function of time and the dimensionless quantities αn are
given by

α1 = − ω′′

2ω/k2
= −1

2

c2
g

c2
+

1

4
+
q2 cosh(2q)

sinh2(2q)
> 0, (4.2)

α2 =
cosh 4q + 8− 2 tanh2 q

16 sinh4 q
−

(
2 cosh2 q + cg/c

)2

2 sinh2(2q)
(
q/tanh q − c2

g/c
2
) . (4.3)

Note that the dimensionless coefficients α1, α2 are real and βr, βi have the dimensions of
1/time. Recall the classical result that α2 is monotonic in kh and is positive (negative)
if kh > (<) 1.37.

Making the transformation

A = ε−1A′ exp

{
−iεk

(
1 +

cg

2c cosh2 q

)∫
S (t1) dt1 + iβrεt1

}
(4.4)
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and returning to the natural coordinates x, t, (4.1) becomes, in physical variables

−i

(
∂

∂t
+ cg

∂

∂x

)
A′ +

ωα1

k2

∂2A′

∂x2
+ ωk2α2 |A′|2 A′ − iβ̂i (kσ0)

2 A′ = 0, (4.5)

where σ0 is the dimensional root-mean-square bottom roughness height and β̂i =
βi/(kσ)2 depends only on kh and `G/h. We transform to moving coordinates and
introduce the dimensionless variables

B = A′/A0, X = k2A0

(
x− cgt)√|α2| /α1, τ = |α2| (kA0)

2 ωt. (4.6)

Equation (4.5) becomes the nonlinear Schrödinger equation with damping†

−i
∂B

∂τ
+
∂2B

∂X2
+

α2

|α2| |B|
2
B − iΘB = 0, (4.7)

where

Θ =
β̂i

|α2|
(
σ0

A0

)2

(4.8)

signifies the relative importance of random and nonlinear effects and can be of order
unity.

As is the case for the classical Stokes wave, we have checked numerically from
(4.7) that a nonlinear soliton envelope is also exponentially localized over a random
region of finite length. Specifically, energy in the transmitted wave packet (no longer
a soliton) is reduced from the initial soliton energy by a factor which diminishes
exponentially with the length of the random region. This is to be expected, as it is
known theoretically (Ablowitz & Segur 1981) from (4.7) that over a random bottom
of infinite extent,

dE

dτ
= −2ΘE, (4.9)

where

E(τ) =

∫ ∞
−∞
|B(X, τ)|2 dX (4.10)

is the total wave energy in the wave packet.

4.1. Stokes waves disturbed by side bands

The special solution of (4.7) uniform in X is equivalent to (3.2),

BS = exp

(
−Θτ+ i

α2

2|α2|Θ (e−2Θτ − 1)

)
. (4.11)

In the moving frame of reference, the amplitude decays in time.
Let us first examine how BS reacts initially to side-band disturbances, and substitute

B = BS (1 +B′) into (4.7). Retaining first-order terms in B′, we obtain

−i
∂B′
∂τ

+
∂2B′
∂X2

+
α2

|α2| e
−2Θτ

(B′ +B′∗) = 0. (4.12)

† This equation has been studied analytically for weak damping (Θ � 1) of soliton envelopes in
Ablowitz & Segur (1981) and Fabrikant & Stepanyants (1998).
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Substituting B′ = R + iI into (4.12) and separating real and imaginary parts, we
obtain

∂R

∂τ
− ∂2I

∂X2
= 0, (4.13)

∂I

∂τ
+
∂2R

∂X2
+

2α2

|α2| e
−2ΘτR = 0. (4.14)

For a spatially sinusoidal disturbance with modulational wavenumber K ,

R = Re
(
R̄(τ) eiKX

)
, I = Re

(
Ī(τ) eiKX

)
. (4.15)

Equations (4.13) and (4.14) can be combined to give

d2

dτ2

{
R̄

Ī

}
−K2

(
2α2

|α2| e
−2Θτ −K2

){
R̄

Ī

}
= 0. (4.16)

Instability is possible initially only if α2 > 0, corresponding to deep water with
kh > 1.37, as in the case without disorder. However, since the carrier wave BS decays
in time, the side band is unstable only if

K
√

2e−2Θτ −K2 > Θ. (4.17)

Thus, over a random seabed, both the range of instability and the growth rate diminish
in the course of propagation. Clearly, if Θ is large, attenuation takes over quickly
and an initially unstable side band is unlikely to grow significantly. However, if the
randomness is weak relative to nonlinearity, nonlinear effects can still be important
for some time.

As an example, we have solved an initial-value problem for the NLS equation (4.7)
with α2 > 0 subject to periodic boundary conditions, by a finite difference scheme
(Yue & Mei 1980). At τ = 0, the wave envelope contains a carrier wave and a pair of
small, symmetric side bands,

B(0, X) = 1 + δ
1− i√

2
cosX, (4.18)

where δ � 1 is a constant. Numerical results are shown in figure 4, for a case of
strong nonlinearity relative to randomness, Θ = 0.075. Here, the wavenumber of the
side bands is taken to be 1, which maximizes the left-hand side of (4.17). It can be
seen that unstable side bands grow and then oscillate as they exchange energy with
the carrier wave. However, over longer times, both the side bands and the carrier
wave decay due to random scattering. For larger values of Θ, monotonic decay due
to radiation damping dominates the evolution after a short time. Indeed, for K = 1,
(4.17) implies that instability occurs only when

τ 6
1

Θ
log

2

Θ2 + 1
. (4.19)

Thus, monotonic decay begins at τ = 0 if Θ > 1, and at τ ≈ 1 if Θ ≈ 0.5.

4.2. Effects of a finite strip of disorder on a wave packet

Over a deep and horizontal seabed, it is well known from inverse scattering theory
that if the wave envelope is initially a packet of the form

B(0, X) = sech

(
X√
2M ′

)
, (4.20)
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Figure 4. Nonlinear evolution of the wave envelope with initial condition (4.18) for α2 > 0,
Θ = 0.075 and δ = 0.1. (a) Wave envelope amplitude |B(X, τ)| as a function of the moving coordinate

X and normalized time τ. (b) Time evolution of |B̂n(τ)|, where |B̂0| is the carrier wave amplitude

and |B̂n| the nth harmonic side-band amplitude, for n > 1. The broken line shows the evolution of
the amplitude |BS | of the uniform Stokes wave (4.11).

then M bound solitons will evolve where M is the largest integer less than M ′
(Satsuma & Yajima 1974). These bound solitons travel together, but exchange energy
periodically; the number of distinct modulational periods is M − 1.

By solving (4.7) numerically we now examine the passage and subsequent evolution
of such a packet over a random strip of finite length. Because of the coordinate
transformation (4.6), the random strip appears in the (X, τ)-plane as a band inclined
to the left at a small slope of S = O(kA0). For illustration, we choose L,Θ, S such that
after transmission, the total energy is reduced to one quarter of its initial value. This
corresponds approximately to the envelope height being reduced by half. Specifically,
we take L = 50, Θ = log 2 and S = −1/50, so that the total duration of the passage
is ∆τ = 1. At τ = 0, the random patch begins at X = 10. Figure 5 demonstrates the
evolution of the initial wave packet (4.20) with M ′ = 2, 4, 6. Passage over the random
patch can be identified by the relatively white region. After passage, the envelope
undergoes periodic modulations with 0, 1 and 2, i.e. M/2 − 1, periods, implying the
presence of 1, 2 and 3 bound solitons, respectively. This is confirmed by comparing the
computed profiles with theoretical bound soliton profiles. Calculations for an initial
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Figure 5. Evolution of the wave envelope |B| over a patch of randomness of length L = 50,
with α2 > 0 and Θ = log 2. The random patch appears as a slanted strip (broken lines) of slope
S = −1/50 in the (X, τ)-plane. At τ = 0, the random patch begins at X = 10 and the wave envelopes
are given by (4.20) with (a) M ′ = 2, (b) M ′ = 4 and (c) M ′ = 6. After crossing the random patch,
the envelopes are close to M ′/2-solitons. The plots in the left column show the wave envelope and
those in the right show its contours.

soliton, i.e. M ′ = 1, show that the peak amplitude is reduced by half when leaving
the random patch. The envelope flattens out due to dispersion, consistent with the
analytical theory; plots are therefore omitted.

To see how different entry times affect the subsequent evolution, we modify the
problem corresponding to figure 5(b) so that the same initial wave packet enters the
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Figure 6. The same case as figure 5(b), except that the wave envelope meets the random patch at
a later stage in its evolution. At τ = 0, the random patch begins at X = 400.

region of disorder only after τ ≈ 7.5 (at τ = 0, the random patch begins at X = 400).
As shown in figure 6, four bound solitons, characterized by two peaks, have already
developed before meeting the random region. After passage, still just two bound
solitons emerge, suggesting that the main effect of disorder is simply exponential
attenuation, beyond which nonlinear effects prevail according to the undamped NLS
theory.

As another numerical example involving more intricate physics, we consider a
bi-soliton crossing the same random strip. In the absence of disorder, the following
solution is known to represent a bi-soliton envelope:

B(X, τ) = g/f, (4.21)

where

g = E1(1 + b2|E2|2) + E2(1 + b1|E1|2), Em = exp(kmX − ik2
mτ+ dm),

f = 1 + f1 |E1|2 + f2 |E2|2 + 2Re

(
E1E

∗
2

2
(
k1 + k∗2

)2

)
+

1

64

∣∣∣∣k1 − k2

k1 + k∗2

∣∣∣∣4 |E1|2 |E2|2
(Re (k1) Re (k2))

2
,

fm =
1

8(Re(km))2
, bm =

(k1 − k2)
2

8(Re(km))2(k∗m + kn)2
(n = 1, 2; n 6= m)

(e.g. Johnson 1997, p. 320), where km = am/
√

2 + icm/2 and am, cm are real. When
c1 = c2, the two bound solitons move at the same velocity in the moving coordi-
nate system and exchange energy periodically. For the parameter values k1 = 2/

√
2,

k2 = 1.95/
√

2, d1 = 5 and d2 = 0, the evolution of the initial wave envelope (4.21) is
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Figure 7. Evolution of the wave envelope over the same random patch as that in figure 5. At
τ = 0, the wave envelope is the bi-soliton given by (4.21) with k1 = 2/

√
2, k2 = 1.95/

√
2, d1 = 5 and

d2 = 0. In the absence of randomness, the wave envelope would propagate as a bi-soliton whose
crests remain nearly intact and a fixed distance apart.

solved numerically from (4.7) and shown in figure 7. As the twin peaks cross the
random patch, their energy is reduced. After leaving the patch, the twin peaks expand
in width and interact, causing new and smaller peaks to form. The central peak
emerges as a soliton, while those on the sides eventually flatten out due to dispersion.
This example serves to show that attenuation due to random scattering can cause
drastic changes in some nonlinear waves.

5. Final remarks
In conclusion, we have shown that randomness on the sea bottom (i.e. in the

bottom boundary condition) leads to a deterministic wave envelope equation of
NLS form. Physically, multiple scattering gives rise to radiation damping which is
proportional to the correlation of the randomness. In simple situations, such as a
uniform Stokes wave train or a wave packet, the consequence is similar to that known
in linearized wave theories, i.e. exponential attenuation in space. This is different
from existing theories based on the NLS equation with a random potential, where
localization is not necessarily exponential. However, in more complex situations, such
as a bi-soliton, unexpected evolutions result due to the interplay between damping
and nonlinearity.
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Appendix A. Green’s function
Taking the exponential Fourier transform of (2.23), (2.24) and (2.25), it is straight-

forward to find

G(x, z) =
1

2π

∫
C

dα eiα(x−x′) −(ω2/g) sinh αz − α cosh αz

α(α sinh αh− (ω2 cosh αh/g))
. (A 1)

To satisfy the radiation condition, we take the integration path C to be the real axis of
the complex α-plane, but indented above the real pole at α = −k and below another
real pole at α = k, where k is the positive real root of the dispersion relation (2.13).
The integrand also has imaginary poles at ±ikn which are the positive real roots of

ω2 = gikn tanh iknh = −gkn tan knh, n = 1, 2, 3, . . . (A 2)

By residue calculus it can be shown that, at z = −h,

G
(|ξ|,−h) = − i(ω2/gk) eik|ξ|

ω2h/g + sinh2 kh
−∑

n

(ω2/gkn) e−kn|ξ|

ω2h/g − sin2 knh
. (A 3)

Appendix B. The coefficient β
Substituting the Green’s function (A 3) into (2.37) yields

β

ω
=

(kσ)2

2 cosh2 kh

{
I0

ω2h/g + sinh2 kh
+

∞∑
n=1

k

kn

In

ω2h/g − sin2 knh

}
, (B 1)

where

I0 = − i

k

∫ ∞
−∞

{(
d

dξ
− ik

)2

γ

}
e−ikξ+ik|ξ| dξ, (B 2)

In = −1

k

∫ ∞
−∞

{(
d

dξ
− ik

)2

γ

}
e−ikξ−kn|ξ| dξ. (B 3)

Note that 1
2
(2n− 1)π < knh < nπ, and as n→∞, knh ∼ nπ. Thus limn→∞ sin knh = 0.

The following properties of γ(ξ) are assumed: γ(0) = 1; γ(ξ) is even, real and
either has compact support or decays exponentially as |ξ| → ∞; and γ(ξ) is twice
differentiable everywhere, including the origin. Under these assumptions, (B 2) and
(B 3) simplify to

I0 = ik

∫ ∞
0

(
e2ikξ + 1

)
γ(ξ) dξ + 2, (B 4)

In = −2

k
Re

{∫ ∞
0

e−(kn+ik)ξ

(
d

dξ
− ik

)2

γ(ξ) dξ

}
. (B 5)
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Notice that In is real. Equations for βr and βi are obtained by substituting (B 4) and
(B 5) into the real and imaginary parts, respectively, of (B 1):

βr

ω
=

(kσ)2

2 cosh2 kh

{
Re (I0)

ω2h/g + sinh2 kh
+

∞∑
n=1

k

kn

In

ω2h/g − sin2 knh

}
, (B 6)

βi

ω
=

(kσ)2

2 cosh2 kh

Im (I0)

ω2h/g + sinh2 kh
. (B 7)

Taking the real and imaginary parts of (B 4) gives

Re(I0) = 2− k
∫ ∞

0

γ(ξ) sin(2kξ) dξ,

Im(I0) = k

∫ ∞
0

γ cos(2kξ) dξ + k

∫ ∞
0

γ dξ =
k

2

∫ ∞
−∞
γ cos(2kξ) dξ +

k

2

∫ ∞
−∞
γ dξ

=
k

2

∫ ∞
−∞
γ(ξ) e−2ikξ dξ +

k

2

∫ ∞
−∞
γ(ξ) dξ =

k

2
(γ̂(2k) + γ̂(0)),

where γ̂(k) is the Fourier transform of γ(ξ). Hence (B 7) can be rewritten as

βi

ω
=

(kσ)2k(γ̂(2k) + γ̂(0))

4 cosh2 kh(ω2h/g + sinh2 kh)
. (B 8)

We now consider the Gaussian correlation function.

B.1. Gaussian correlation

Substituting γ(ξ) = exp[−ξ2/`2
G] into (B 4) gives

I0 =
i
√
πk`G

2
(1 + exp[−(k`G)2]) +

√
πk`G

2
exp[−(k`G)2]erfi(k`G) + 2, (B 9)

In =
kn

k
Re

{
2−√πkn`G exp

(
`2
G

4
(kn + ik)2

)
erfc

(
`G

2
(kn + ik)

)}
, (B 10)

where erfi(x) = ierf(ix) is a real-valued function. It is straightforward to show that
for large n, In ∝ 1/n2, so that the sum in βr converges. Substituting (B 9) and (B 10)
into (B 6) gives

βr

ω
=

(σ/`G)2(k`G)2

2 cosh2 kh

{
2 + 1

2

√
πk`G exp[−(k`G)2]erfi(k`G)

ω2h/g + sinh2 kh

+

∞∑
n=1

2− kn`G√πRe{exp( 1
4
`2
G(kn + ik)2)erfc( 1

2
`G(kn + ik))}

ω2h/g − sin2 knh

}
. (B 11)

Substituting the imaginary part of (B 9) into (B 7) yields

βi

ω
=

(σk)2

cosh2 kh
(
ω2h/g + sinh2 kh

)√πk`G
4

(
1 + exp[−(k`G)2]

)
. (B 12)

Substituting (B 12) into (3.3) yields the same localization length as found using (3.6)
from the Fourier transform of γ(ξ).

As a final note, it can be shown that for any continuous γ(ξ), βi and the localization



Surface waves over a random seabed 267

distance are finite. However, βr is finite only if the second derivative of γ(ξ) is finite at
the origin. This is associated with the logarithmic singularity of G (|ξ|) at the source
ξ = 0. A discontinuity in γ′(ξ) at ξ = 0 implies γ′′(ξ) ∝ δ(ξ), which gives rise to an
unbounded integral in (2.37).
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